AP Calculus BC - AP Exam Review Chart

When you see this...
Do this...

1.	Find the zeros	
2.	Find where $f(x)=g(x)$	
3.	Find the equation of the line tangent to $f(x)$ at $x=a$	
4.	Find the equation of the line normal to $f(x)$ at $x=a$	
5.	Use the equation of the tangent line to $f(x)$ at $x=a$ to approximate $f(b)$	
6.	$\frac{d}{d x}(f(x) g(x))=$	
7.	$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=$	
8.	$\frac{d}{d x}(f(g(x)))=$	
9.	Find where the tangent line to $f(x)$ is horizontal/vertical	
10.	Find the interval(s) where $f(x)$ is increasing/decreasing	
11.	Find the interval(s) where the slope of $f(x)$ is increasing/decreasing	
12.	Find the interval(s) where $f(x)$ is concave up/down	
13.	Find the maximum/minimum values of $f(x)$ on $[a, b]$	
14.	Find critical points	
15.	Find and verify relative extrema - $1^{\text {st }}$ deriv test	
16.	Find and verify relative extrema $-2^{\text {nd }}$ deriv test	
17.	Find and verify inflection points	
18.	Show that $\lim _{x \rightarrow a} f(x)$ exists	

19.	Show that $f(x)$ is continuous	
20.	Show that $f(x)$ is differentiable (or not) at a given point	
21.	Find vertical asymptotes of $f(x)$	
22.	Find horizontal asymptotes of $f(x)$	
23.	Find the average rate of change of $f(x)$ on $[a, b]$	Find the instantaneous rate of change of $f(x)$ at $x=a$
26.	Find the average value of $f(x)$ on $[a, b]$	
26.	Show that a piecewise function is continuous or differentiable at a point a (where the function splits)	
27.	Given a position function, find the velocity and acceleration functions	
28.	Find the displacement of a moving particle on the interval $[a, b]$	
29.	Find $x\left(t_{2}\right)$ given $x\left(t_{1}\right)$ and $v(t)$	
32.	Find the range of $f(x)$ using the definition of the	
derivative		

38.	Find the derivative of the inverse of $f(x)$ at x $=a$					
39.	Given that the rate of change of y is proportional to y, find an expression for y					
40.	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas					
41.	$\int_{a}^{b} f^{\prime}(x) d x=$					
42.	$\frac{d}{d x} \int_{a}^{x} f(t) d t=$					
	$\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=$					
	$\frac{d}{d x} \int_{h(x)}^{g(x)} f(t) d t=$					
45.	Appro and th a. b. c. d.	(x) hod 3 13 sub	5 16	bi $\begin{aligned} & \hline 7 \\ & \hline 5 \end{aligned}$	val $\begin{aligned} & 9 \\ & \hline 3 \end{aligned}$	
46.	Given the table above, approximate $f^{\prime}(3)$					
47.	Find the particular solution $y=f(x)$ to$\frac{d y}{d x}=\ldots$					
48.	Given a differential equation $\frac{d y}{d x}=f(x, y)$, draw a slope field and a particular solution through a given point					
49.	Given a differential equation $\frac{d y}{d x}=f(x, y)$, show that $y=f(x)$ is a solution.					
50.	Euler's Method: If $\frac{d y}{d x}=f(x, y)$ and $\left(x_{0}, y_{0}\right)$ is a point on the solution curve, then $y_{1}=$					

51.	Find the area contained by two functions (with respect to x)	
52.	Find the area contained by two functions (with respect to y)	
53.	Find the volume of a solid with known crosssectional area $A(x)$ whose base is the area under $f(x)$ on $[\mathrm{a}, \mathrm{b}]$	
54.	Find the volume if the area under $f(x)$ and above the x - axis from $[\mathrm{a}, \mathrm{b}]$ is rotated about the: a. x-axis b. line $y=c$	
55.	Find the volume if the area between $f(x)$ and $g(x)$ is rotated about the: a. x-axis b. line $y=c$	
56.	Repeat \#54 and \#55 with functions with respect to y and rotating about the: a. y-axis b. line $x=c$	
57.	Find the length of a curve (function mode)	
58.	Find $f(b)$ given $f^{\prime}(x)$ and $f(a)$	
59.	Given a graph of $f^{\prime}(x)$, determine where $f(x)$ is: a. Increasing/decreasing b. Concave up/down Also determine relative extrema and points of inflection.	
60.	Integration by Parts: $\int u d v=$ LIPET =	
61.	Partial Fractions (cover up) a. For what types of functions can it be used? b. What must be true about the denominator?	

62.	L'Hopital's Rule: for what indeterminate forms can it be used?	
63.	Improper Integrals: what makes an integral improper?	
64.	$\frac{d P}{d t}=\frac{k}{M} P(M-P)$ a. What does M stand for? b. What is $\lim _{t \rightarrow \infty} P(t)$ c. When is the population growing fastest?	
65.	Vectors: if $r(t)=\langle x(t), y(t)\rangle$, then: a. $\quad v(t)=$ b. $a(t)=$ c. \quad Speed $=$ d. Total Distance traveled (arc length) on $[\mathrm{a}, \mathrm{b}]=$ e. $\frac{d y}{d x}=$ f. $\frac{d^{2} y}{d x^{2}}=$ g. Object at rest if...	
66.	Find the area contained by a polar curve	
67.	Converting Cartesian to polar: a. $x=$ b. $y=$	
68.	Slope in polar: $\frac{d y}{d x}=$	
69.	Find the length of a polar curve	
70.	Determine the convergence/divergence of a series using; a. Divergence test b. Integral test c. P-series test d. Geometric series test e. Ratio test	

71.	Find the interval/radius of convergence of a series	
72.	Write the Taylor series about $x=a$	
73.	Write the Maclaurin series for a. $\sin x$ b. $\cos x$ c. e^{x} d. $\frac{1}{1-x}$ e. $\frac{1}{1+x}$ f. $\tan ^{-1} x$	
74.	Write a series for each of the following (using known series): a. $\frac{\cos (3 x)+1}{x}$ b. $\frac{e^{-x^{2}}}{x}$	
75.	If $f(x)=2+6 x+18 x^{2}+\cdots$, find $f\left(\frac{1}{6}\right)$	
76.	Suppose $f^{(n)}(a)=\frac{(n+1) n!}{2^{n}}$ for $n \geq 1$ and $f(a)=2$. Write the first four terms and the general term of the Taylor series for $f(x)$ about $x=a$.	
77.	Let S_{4} be the sum of the first 4 terms of a converging alternating series that approximates $f(x)$. Approximate $\left\|f(x)-S_{4}\right\|$	
78.	What are the properties of a series that guarantee that the error in approximating $f(x)$ using S_{n} is less than or equal to a_{n+1} ?	
79.	Given a Taylor series, find the Lagrange form of the remainder for the $4^{\text {th }}$ term	

