AP Calculus BC - AP Exam Review Chart

When you see this...

1 Find the zeros

Do this...

	1.	Find the zeros	
	2.	Find where $f(x) = g(x)$	
	3.	Find the equation of the line tangent to $f(x)$ at $x = a$	
	4.	Find the equation of the line normal to $f(x)$ at $x = a$	
	5.	Use the equation of the tangent line to $f(x)$ at $x = a$ to approximate $f(b)$	
	6.	$\frac{d}{dx}\big(f(x)g(x)\big) =$	
	7.	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) =$	
	8.	$\frac{d}{dx}\big(f\big(g(x)\big)\big) =$	
	9.	Find where the tangent line to $f(x)$ is horizontal/vertical	
	10.	Find the interval(s) where $f(x)$ is increasing/decreasing	
	11.	Find the interval(s) where the slope of $f(x)$ is increasing/decreasing	
	12.	Find the interval(s) where $f(x)$ is concave up/down	
	13.	Find the maximum/minimum values of $f(x)$ on $[a,b]$	
	14.	Find critical points	
	15.	Find and verify relative extrema – 1 st deriv test	
	16.	Find and verify relative extrema – 2 nd deriv test	
	17.	Find and verify inflection points	
	18.	Show that $\lim_{x\to a} f(x)$ exists	
_			

Show that $f(x)$ is continuous	
Show that $f(x)$ is differentiable (or not) at a given point	
Find vertical asymptotes of $f(x)$	
Find horizontal asymptotes of $f(x)$	
Find the average rate of change of $f(x)$ on $[a,b]$	
Find the instantaneous rate of change of $f(x)$ at $x = a$	
Find the average value of $f(x)$ on $[a,b]$	
or differentiable at a point a (where the	
Find the displacement of a moving particle on the interval $[a,b]$	
Find $x(t_2)$ given $x(t_1)$ and $v(t)$	
Find the speed of the particle at a given value of t	
Find the total distance traveled on [<i>a</i> , <i>b</i>]	
Find the average velocity of the particle on $[a,b]$	
Determine whether an object is speeding up/slowing down	
Show that the Mean Value Theorem holds (or does not hold) on [a,b] for a given function	
Find the domain of $f(x)$	
Find the range of $f(x)$	
Find $f'(x)$ using the definition of the derivative	
	Find vertical asymptotes of $f(x)$ Find horizontal asymptotes of $f(x)$ Find the average rate of change of $f(x)$ on $[a,b]$ Find the instantaneous rate of change of $f(x)$ at $x = a$ Find the average value of $f(x)$ on $[a,b]$ Show that a piecewise function is continuous or differentiable at a point a (where the function splits) Given a position function, find the velocity and acceleration functions Find the displacement of a moving particle on the interval $[a,b]$ Find $x(t_2)$ given $x(t_1)$ and $v(t)$ Find the speed of the particle at a given value of t Find the average velocity of the particle on $[a,b]$ Determine whether an object is speeding up/slowing down Show that the Mean Value Theorem holds (or does not hold) on $[a,b]$ for a given function Find the range of $f(x)$

38.	Find the derivative of the inverse of $f(x)$ at $x = a$	
39.	Given that the rate of change of <i>y</i> is proportional to <i>y</i> , find an expression for <i>y</i>	
40.	Find the line $x = c$ that divides the area under $f(x)$ on $[a,b]$ into two equal areas	
41.	$\int_a^b f'(x)dx =$	
42.	$\frac{d}{dx}\int_a^x f(t)dt =$	
43.	$\frac{d}{dx}\int_{a}^{g(x)}f(t)dt =$	
44.	$\frac{d}{dx}\int_{h(x)}^{g(x)}f(t)dt=$	
45.	Approximate $\int_a^b f(x)dx$ using 4 subintervals* and the given method	
	c. MRAM (*2 subintervals) d. TRAP	
46.	Given the table above, approximate $f'(3)$	
47.	Find the particular solution $y = f(x)$ to $\frac{dy}{dx} = \dots$	
48.	Given a differential equation $\frac{dy}{dx} = f(x, y)$,	
	draw a slope field and a particular solution through a given point	
49.	Given a differential equation $\frac{dy}{dx} = f(x, y)$,	
50.	show that $y = f(x)$ is a solution. Euler's Method: If $\frac{dy}{dx} = f(x, y)$ and (x_0, y_0) is	
	a point on the solution curve, then $y_1 = \int (x_0, y_0) dx$	
	- · · · · · · · · · · · · · · · · · · ·	

51.	Find the area contained by two functions (with respect to <i>x</i>)	
52.	Find the area contained by two functions (with respect to <i>y</i>)	
53.	Find the volume of a solid with known cross- sectional area $A(x)$ whose base is the area under $f(x)$ on [a,b]	
54.	above the x – axis from [a,b] is rotated about the: a. x – axis	
	b. line $y = c$	
55.	and $g(x)$ is rotated about the:	
	a. $x - axis$ b. line $y = c$	
56.	Repeat #54 and #55 with functions with respect to <i>y</i> and rotating about the:	
	a. $y - axis$ b. line $x = c$	
57.	Find the length of a curve (function mode)	
58.	Find $f(b)$ given $f'(x)$ and $f(a)$	
59.	Given a graph of $f'(x)$, determine where $f(x)$ is:	
	a. Increasing/decreasingb. Concave up/down	
	Also determine relative extrema and points of inflection.	
60.	Integration by Parts: $\int u dv =$	
61.	LIPET = Partial Fractions (cover up)	
	-	
	a. For what types of functions can it be used?	
	b. What must be true about the denominator?	

62.	L'Hopital's Rule: for what indeterminate forms can it be used?	
63.	Improper Integrals: what makes an integral improper?	
64.	$\frac{dP}{dt} = \frac{k}{M}P(M-P)$	
	a. What does M stand for? b. What is $\lim_{t\to\infty} P(t)$	
	c. When is the population growing fastest?	
65.	Vectors: if $r(t) = \langle x(t), y(t) \rangle$, then:	
	a. $v(t) =$ b. $a(t) =$ c. Speed = d. Total Distance traveled (arc length) on $[a,b] =$ e. $\frac{dy}{dx} =$ f. $\frac{d^2y}{dx^2} =$ g. Object at rest if	
66.	Find the area contained by a polar curve	
67.	Converting Cartesian to polar: a. $x =$ b. $y =$	
68.	Slope in polar: $\frac{dy}{dx}$ =	
69.	Find the length of a polar curve	
70.	Determine the convergence/divergence of a series using; a. Divergence test b. Integral test c. P-series test d. Geometric series test e. Ratio test	

71.	Find the interval/radius of convergence of a series	
72.	Write the Taylor series about $x = a$	
73.	Write the Maclaurin series for a. $\sin x$ b. $\cos x$ c. e^x d. $\frac{1}{1-x}$ e. $\frac{1}{1+x}$ f. $\tan^{-1} x$	
74.	Write a series for each of the following (using known series): a. $\frac{\cos(3x)+1}{x}$ b. $\frac{e^{-x^2}}{x}$	
75.	If $f(x) = 2 + 6x + 18x^2 + \cdots$, find $f(\frac{1}{6})$	
76.	Suppose $f^{(n)}(a) = \frac{(n+1)n!}{2^n}$ for $n \ge 1$ and $f(a) = 2$. Write the first four terms and the general term of the Taylor series for $f(x)$ about $x = a$.	
77.	Let S_4 be the sum of the first 4 terms of a converging alternating series that approximates $f(x)$. Approximate $ f(x)-S_4 $	
	What are the properties of a series that guarantee that the error in approximating $f(x)$ using S_n is less than or equal to a_{n+1} ?	
79.	Given a Taylor series, find the Lagrange form of the remainder for the $4^{\rm th}$ term	